x

NETWORKS

Xena OpenAutomation Core
Documentation

Release 2.0.3

Xena Networks

Jan 03, 2024

TABLE OF CONTENT

1 Introduction 3
2 Getting Started 5
3 Understanding XOA Core 17
4 API Reference 27
5 Glossary of Terms 29
6 Indices and Tables 31

Index 33

Xena OpenAutomation Core Documentation, Release 2.0.3

Xena OpenAutomation Core (XOA Core) is a framework for executing Xena automated test
suites and managing Xena Xena’s physical and virtual Traffic Generation and Analysis (7GA)
testers.

The Xena OpenAutomation Core Documentation describes the basic architecture and how to
run Xena’s automated test suites.

The target audience of this document is test specialists who develop and run automated test
scripts/programs using Xena 7GA hardware and software. Users of this document should have
the following knowledge and experience:

* Ability to program with Python language.
* Familiarity with the operating system of your development environment.
* Familiarity with Xena test equipment.

* Working knowledge of data communications theory and practice.

Important: To learn XOA Python API, go to Xena OpenAutomation Python API Documenta-
tion.

To learn XOA CLI commands, go to Xena OpenAutomation CLI Command Documentation.

TABLE OF CONTENT 1

https://docs.xenanetworks.com/projects/xoa-python-api
https://docs.xenanetworks.com/projects/xoa-python-api
https://docs.xenanetworks.com/projects/xoa-cli

Xena OpenAutomation Core Documentation, Release 2.0.3

2 TABLE OF CONTENT

CHAPTER
ONE

INTRODUCTION

Xena OpenAutomation Core (XOA Core) is an open-source test suite framework for network
automation and testing. Itis designed to host various XOA Test Suites as plugins, allowing users
to create, manage, and run test cases for different network scenarios. The XOA Core framework
serves as the foundation for building and executing test suites in the XOA ecosystem.

Key features of XOA Core include:

1.

Modular architecture: The test suite framework employs a modular architecture, enabling
users to develop and run different test suites as plugins.

Test Suite execution: XOA Core supports both local and remote test suite execution. Users
can execute test suites on their local machines or on remote testbeds through the XOA CLI
or Web GUI.

. Test Case management: XOA Core provides tools for managing test cases, including cre-

ating, updating, and deleting them. Users can also organize test cases using tags and
execute them in parallel or sequentially.

Extensibility: The framework is designed to be extensible, allowing users to develop cus-
tom test suites and plugins to address specific testing requirements.

. Logging and reporting: XOA Core offers built-in logging and reporting functionality,

generating detailed test reports to help users analyze test results and identify issues.

The official documentation provides a comprehensive guide on how to install, configure, and use
XOA Core. It covers topics such as setting up the environment, creating test suites, executing
test cases, and analyzing test results. The documentation also includes a reference for XOA
Core’s API and example test suites to help users get started with their test automation projects.

OPEN AUTOMATION

https://github.com/xenanetworks/open-automation-test-suites
https://docs.xenanetworks.com/projects/xoa-core

Xena OpenAutomation Core Documentation, Release 2.0.3

OPEN AUTOMATION

OPEN AUTOMATION

4 Chapter 1. Introduction

CHAPTER
TWO

GETTING STARTED

2.1 Installing XOA Core

XOA Core is available to install via the Python Package Index. You can also install from the
source file.

2.1.1 Prerequisites

Before installing XOA Core, please make sure your environment has installed:
* Python
* pip

Python

XOA Core requires that you install Python on your system.

Note: XOA Core requires Python >= 3.8.

pip

Make sure pip is installed on your system. pip is the package installer for Python . You can
use it to install packages from the Python Package Index and other indexes.

Usually, pip is automatically installed if you are:

» working in a virtual Python environment (virtualenv or venv). It is not necessary to use
sudo pip inside a virtual Python environment.

* using Python downloaded from python.org
If you don’t have pip installed, you can:

* Download the script, from https://bootstrap.pypa.io/get-pip.py.

https://pypi.org/
https://realpython.com/installing-python/
https://packaging.python.org/guides/tool-recommendations/
https://pypi.org/
https://packaging.python.org/en/latest/tutorials/installing-packages/#creating-and-using-virtual-environments
https://virtualenv.pypa.io/en/latest/
https://docs.python.org/3/library/venv.html
https://www.python.org/
https://bootstrap.pypa.io/get-pip.py

Xena OpenAutomation Core Documentation, Release 2.0.3

* Open a terminal/command prompt, cd to the folder containing the get-pip.py file and

run:
Listing 1: Install pip in Windows environment.
\> Py get-pip.py }
Listing 2: Install pip in macOS/Linux environment.
‘$ python3 get-pip.py }
See also:

Read more details about this script in pypa/get-pip.
Read more about installation of pip in pip installation.

2.1.2 Installing From PyPI Using pip

pip is the recommended installer for XOA Core. The most common usage of pip is to install
from the Python Package Index using Requirement Specifiers.

Note: If you install XOA Core using pip install xoa-core, XOA Python API (PyPI pack-
age name xoa_driver) will be automatically installed.

Install to Global Namespace

Listing 3: Install XOA Core in Windows environment from
PyPIL.

> pip install xoa-core # latest version
> pip install xoa-core== # specific version

.0.7
> pip install xoa-core>=1.0.7 # minimum version

6 Chapter 2. Getting Started

https://github.com/pypa/get-pip
https://pip.pypa.io/en/stable/installation/
https://pypi.org/
https://pip.pypa.io/en/stable/cli/pip_install/#requirement-specifiers
https://pypi.org/project/xoa-python-api/

Xena OpenAutomation Core Documentation, Release 2.0.3

Listing 4: Install XOA Core in macOS/Linux environment

from PyPL.
$ pip install xoa-core # latest version
$ pip install xoa-core==1.0.7 # specific version
$ pip install xoa-core>=1.0.7 # minimum version

Install in Virtual Environment

Install XOA Core in a virtual environment, so it does not pollute your global namespace.

For example, your project folder is called /my_xoa_project.

Listing 5: Install XOA Core in a virtual environment in Win-
dows from PyPI.

[my_xoa_project]> python -m venv ./env
[my_xoa_project]> source ./env/bin/activate

(env) [my_xoa_project]> pip install xoa-core # latest version
(env) [my_xoa_project]> pip install xoa-core==1.0.7 # specific version
(env) [my_xoa_project]> pip install xoa-core>=1.0.7 # minimum version

Listing 6: Install XOA Core in a virtual environment in ma-
cOS/Linux from PyPI.

[my_xoa_project]$ python3 -m venv ./env
[my_xoa_project]$ source ./env/bin/activate

(env) [my_xoa_project]$ pip install xoa-core # latest version
(env) [my_xoa_project]$ pip install xoa-core==1.0.7 # specific version
(env) [my_xoa_project]$ pip install xoa-coree>=1.0.7 # minimum version

J

Afterwards, your project folder will be:

Listing 7: After creating Python virtual environment

/my_xoa_project
I

|- env

See also:
* Virtual Python environment
¢ virtualenv

¢ venv

2.1. Installing XOA Core 7

https://packaging.python.org/en/latest/tutorials/installing-packages/#creating-and-using-virtual-environments
https://virtualenv.pypa.io/en/latest/
https://docs.python.org/3/library/venv.html

Xena OpenAutomation Core Documentation, Release 2.0.3

2.1.3 Upgrading From PyPI Using pip
To upgrade XOA Core package from PyPI:

Listing 8: Upgrade XOA Core in Windows environment from
PyPL

‘> pip install xoa-core --upgrade }

Listing 9: Upgrade XOA Core in macOS/Linux environment
from PyPI.

‘$ pip install xoa-core --upgrade J

Note: If you upgrade XOA Core using pip install --upgrade xoa-core, XOA Python
API (PyPI package name xoa_driver) will be automatically upgraded.

2.1.4 Installing Manually From Source

If for some reason you need to install XOA Core manually from source, the steps are:
Step 1, make sure Python packages wheel and setuptools are installed on your system. Install

wheel and setuptools using pip:

Listing 10: Install wheel and setuptools in Windows en-
vironment.

‘> pip install wheel setuptools J

Listing 11: Install wheel and setuptools in macOS/Linux
environment.

‘$ pip install wheel setuptools }

Step 2, download the XOA Core source distribution from XOA Core Releases. Unzip the archive
and run the setup.py script to install the package:

Listing 12: Install XOA Core in Windows environment from
source.

[xoa_core]> python setup.py install }

8 Chapter 2. Getting Started

https://pypi.org/project/xoa-python-api/
https://wheel.readthedocs.io/en/stable/
https://setuptools.pypa.io/en/latest/index.html
https://github.com/xenanetworks/open-automation-core/releases

Xena OpenAutomation Core Documentation, Release 2.0.3

Listing 13: Install XOA Core in macOS/Linux environment
from source.

[x0oa_core]$ python3 setup.py install

Step 3, if you want to distribute, you can build .whl file for distribution from the source:

Listing 14: Build XOA Core wheel in Windows environment
for distribution.

‘[xoa_core]> python setup.py bdist_wheel

Listing 15: Build XOA Core wheel in macOS/Linux environ-
ment for distribution.

‘[xoa_core]$ python3 setup.py bdist_wheel

Important: If you install XOA Core from the source code, you need to install XOA Python
API (PyPI package name xoa_driver) separately. This is because XOA Python API is treated as
a 3rd-party dependency of XOA Core. You can go to XOA Python API repository to learn how
to install it.

2.1.5 Uninstall and Remove Unused Dependencies

pip uninstall xoa-core can uninstall the package itself but not its dependencies. Leav-
ing the package’s dependencies in your environment can later create conflicting dependencies
problem.

We recommend install and use the pip-autoremove utility to remove a package plus unused
dependencies.

Listing 16: Uninstall XOA Core in Windows environment.

> pip install pip-autoremove
> pip-autoremove xoa-core -y

Listing 17: Uninstall XOA Core in macOS/Linux environ-
ment.

$ pip install pip-autoremove
$ pip-autoremove xoa-core -y

See also:
See the pip uninstall reference.

See pip-autoremove usage.

2.1. Installing XOA Core 9

https://pypi.org/project/xoa-python-api/
https://github.com/xenanetworks/open-automation-python-api
https://github.com/invl/pip-autoremove
https://pip.pypa.io/en/stable/cli/pip_uninstall/#pip-uninstall
https://github.com/invl/pip-autoremove

Xena OpenAutomation Core Documentation, Release 2.0.3

2.2 Step-by-Step Guide

This section provides a step-by-step guide on how to use XOA Core to run XOA test suites.

2.2.1 Create Project Folder

To run XOA test suites, you need a folder to place the test suite plugins, the test configuration
files, and yous Python script to control the tests.

Let’s create a folder called /my_xoa_project

Listing 18: Create the project folder

/my_xoa_project

2.2.2 Install XOA Core

After creating the folder, you can either choose to install XOA Core in a Python virtual environ-
ment or install in your global namespace .

If you have already installed XOA Core in your system, either to your global namespace or in a
virtual environment, you can skip this step.

2.2.3 Place Test Suite Plugins

Depending on what XOA test you want to run, place the corresponding XOA test suite plugins
and the test configuration files in /my_xoa_project.

Your project folder will look like this afterwards.

10 Chapter 2. Getting Started

Xena OpenAutomation Core Documentation, Release 2.0.3

Listing 19: Copy test suite plugins into the project folder

/my_xoa_project
|
|- /test_suites
|- /plugin2544
|- /plugin2889
|- /plugin3918

2.2.4 Run Tests from XOA Test Suite Configurations

Important: If you run Valkyrie test suite configuration files (.v2544 for Valkyrie2544, .
v2889 for Valkyrie2889, .v3918 for Valkyrie3918, and .v1564 for Valkyriel564), go to Run
Tests from Valkyrie Test Suite Configurations.

Copy your XOA test configuration . json files into /my_xoa_project for easy access. Then
create a main. py file inside the folder /my_xoa_project.

Listing 20: Copy XOA test configs and create main.py

/my_xoa_project

|- main.py
| - new_2544_config.json
|- new_2889_config. json
|- new_3918_config. json
|- /test_suites

|- /plugin2544

|- /plugin2889

|- /plugin3918

This main.py controls the test workflow, i.e. load the configuration files, start tests, receive test
results, and stop tests. The example below demonstrates a basic flow for you to run XOA tests.

from __future__ import annotations
from xoa_core import (

controller,

types,
)
import asyncio
import json
from pathlib import Path

PROJECT_PATH = Path(__file__).parent
XOA_CONFIG = PROJECT_PATH / "xoa_2544_config.json"

(continues on next page)

2.2. Step-by-Step Guide 11

Xena OpenAutomation Core Documentation, Release 2.0.3

(continued from previous page)
PLUGINS_PATH = PROJECT_PATH / "test_suites"

async def subscribe(ctrl: "controller.MainController", channel_name:.
—str, fltr: set["types.EMsgType"] | None = None) -> None:
async for msg in ctrl.listen_changes(channel_name, _filter=fltr):
print (msg)

async def main() -> None:
Define your tester login credentials
my_tester_credential = types.Credentials(
product=types.EProductType.VALKYRIE,
host="10.20.30.40"

)

Create a default instance of the controller class.
ctrl = await controller.MainController()

Register the plugins folder.
ctrl.register_lib(str(PLUGINS_PATH))

Add tester credentials into teh controller. If already added, it.
—~will be ignored.

If you want to add a list of testers, you need to iterate.
—through the list.

await ctrl.add_tester(my_tester_credential)

Subscribe to test resource notifications.
asyncio.create_task(subscribe(ctrl, channel_name=types.PIPE_
—RESOURCES))

Load your XOA 2544 config and run.
with open(XOA_CONFIG, "r") as f:

Get rfc2544 test suite information from the core's.
—registration
info = ctrl.get_test_suite_info("'RFC-2544")
if not info:
print("Test suite RFC-2544 is not recognized.'")
return None

Test suite name: "RFC-2544" is received from call of c.get_

—available_test_suites()
test_exec_id = ctrl.start_test_suite("'RFC-2544", json.load(f))

(continues on next page)

12 Chapter 2. Getting Started

Xena OpenAutomation Core Documentation, Release 2.0.3

(continued from previous page)

The example here only shows a print of test result data.
asyncio.create_task(
subscribe(ctrl, channel_name=test_exec_id, fltr={types.
—EMsgType.STATISTICS})
)

By the next line, we prevent the script from being immediately

terminated as the test execution and subscription are non.
—blockable, and they ran asynchronously,

await asyncio.Event().wait()

if __name__ == "__main__

asyncio.run(main())

Then simply run main.py:

Listing 21: Run test suite in Windows.

‘ [my_xoa_project]> python main.py

Listing 22: Run test suite in macOS/Linux.

‘ [my_xoa_project]$ python3 main.py

2.2.5 Run Tests from Valkyrie Test Suite Configurations

If you want to run your Valkyrie test suite configuration files, you should install xoa-converter
to convert Valkyrie test suite configurations into XOA test suite configurations, as illustrated
below.

Nehdd x0a2544.json
V2889 x0a2884.json Start test suite with
V3918 ———»| XOA Converter x0a3918json ® x0a Core
—
See also:

Read more about installing XOA Config Convert

Copy your Valkyrie test configurations into /my_xoa_project for easy access. Then create a
main.py file inside the folder /my_xoa_project.

Listing 23: Copy Valkyrie test configs and create main.py

/my_xoa_project
I
|- main.py
(continues on next page)

2.2. Step-by-Step Guide 13

https://docs.xenanetworks.com/projects/xoa-config-converter

Xena OpenAutomation Core Documentation, Release 2.0.3

(continued from previous page)

|- old_2544_config.v2544
|- 01d_2889_config.v2889
|- 01d_3918_config.v3918
|- /test_suites

|- /plugin2544

|- /plugin2889

|- /plugin3918

This main.py controls the test workflow, i.e. convert Valkyrie configs into XOA configs, load
the configuration files, start tests, receive test results, and stop tests. The example below demon-
strates a basic flow for you to run Valkyrie tests.

from __future__ import annotations
import sys
from xoa_core import (
controller,
types,
)

import asyncio
import json
from pathlib import Path
XOA Converter is an independent module and it needs to be installed.
—via ‘pip install xoa-converter"
try:
from xoa_converter.entry import converter
from xoa_converter.types import TestSuiteType
except ImportError:
print ("X0A Converter is an independent module and it needs to be.
—installed via “pip install xoa-converter ")
sys.exit()

PROJECT_PATH = Path(__file__).parent

OLD_2544_CONFIG = PROJECT_PATH / "old_2544_config.v2544"
OLD_2889_CONFIG = PROJECT_PATH / "o0ld_2889_config.v2889"
PLUGINS_PATH = PROJECT_PATH / "test_suites"

async def subscribe(ctrl: "controller.MainController", channel_name:,.
~str, fltr: set["types.EMsgType"] | None = None) -> None:
async for msg in ctrl.listen_changes(channel_name, _filter=fltr):
print (msg)

async def main() -> None:
Define your tester login credentials

(continues on next page)

14 Chapter 2. Getting Started

Xena OpenAutomation Core Documentation, Release 2.0.3

(continued from previous page)

my_tester_credential = types.Credentials(
product=types.EProductType.VALKYRIE,
host="10.20.30.40"

)

Create a default instance of the controller class.
ctrl = await controller.MainController()

Register the plugins folder.
ctrl.register_lib(str(PLUGINS_PATH))

Add tester credentials into teh controller. If already added, it.
—will be ignored.

If you want to add a list of testers, you need to iterate,
—through the 1list.

await ctrl.add_tester(my_tester_credential)

Subscribe to test resource notifications.
asyncio.create_task(subscribe(ctrl, channel_name=types.PIPE_
<RESOURCES))

Convert Valkyrie 2544 config into XO0A 2544 config and run.
with open(OLD_2544_CONFIG, "r") as f:
get rfc2544 test suite information from the core's.
—registration
info = ctrl.get_test_suite_info("RFC-2544")
if not info:
print("Test suite is not recognized.")
return None

convert the old config file into new config file
new_data = converter(TestSuiteType.RFC2544, f.read())

you can use the config file below to start the test
new_config = json.loads(new_data)

Test suite name: "RFC-2544" is received from call of c.get_
—available_test_suites()
execution_id = ctrl.start_test_suite('RFC-2544", new_config)

The example here only shows a print of test result data.
asyncio.create_task(
subscribe(ctrl, channel_name=execution_id, fltr={types.
—EMsgType.STATISTICS})
)

(continues on next page)

2.2. Step-by-Step Guide 15

Xena OpenAutomation Core Documentation, Release 2.0.3

(continued from previous page)

By the next line, we prevent the script from being immediately

terminated as the test execution and subscription are non.
—blockable, and they ran asynchronously,

await asyncio.Event().wait()

if __name__ == "__main__
asyncio.run(main())

2.2.6 Receive Test Result Data

XOA Core sends test result data (in JSON format) to your code as shown in the example below.
It is up to you to decide how to process it, either parse it and display in your console, or store
them into a file.

Listing 24: Receive test result data

async for stats_data in ctrl.listen_changes(execution_id, _filter=
—{types.EMsgType.STATISTICS}):
print(stats_data)

See also:

Read about Test Result Types

16 Chapter 2. Getting Started

CHAPTER
THREE

UNDERSTANDING XOA CORE

3.1 Introduction

The XOA Core is an asynchronous Python framework that can be represented by four subsys-
tems:

1. Resources Management System lets you manage testers, i.e. add, remove, connect, dis-
connect, and view a list of available testers.

2. Test Suite Plugin System dynamically loads the test suites that are organized in a common
structure, and exposes information of those test suites to you.

3. Test Execution System provides methods that let you control the test execution.

4. Data 10 System let you subscribe to different messages generated by different test suites
and subsystems so you can get test statistics/results, monitor test progress, receiver errors
and warnings, etc.

17

Xena OpenAutomation Core Documentation, Release 2.0.3

Test Sulte Plugin A
=
=] ! 1
= : Lo Resource
Tast Sulte Plugin B ou i Test Execution |
© B ! : Management
= 2= System
2 = £ System
a w 5
= &
£ R
3 Test Sulte Plugin X
e R [PR
XOA Pythan AP

] (xoa-driver) Z\
Y

N/

Xena test equipment

3.2 Resources Management System

The key functionality is represented in managing and monitoring the state of known testers.

Available operations for users:
* Add testers
* Remove testers
* Connect to testers
* Disconnect from testers
* Get the list of available testers

You can find the corresponding APIs in API Reference

Under the hood, XOA Core uses the instance of xoa_driver library as a representation of the

resource.

Note: XOA Python API (PyPI package name xoa_driver) is treated as a 3rd-party dependency,

thus its source code is not included in XOA Core.

18 Chapter 3. Understanding XOA Core

https://pypi.org/project/xoa-driver/
https://github.com/xenanetworks/open-automation-python-api
https://pypi.org/project/xoa-driver/

Xena OpenAutomation Core Documentation, Release 2.0.3

3.3 Test Suite Plugin System

All test suites are considered plug-ins by the XOA Core. You can freely choose which test suites
to use. XOA Core dynamically loads test suites that are organized in a common structure, and
exposes information of those test suites to you.

Available operations for users:
* Register a test suite into the plug-in library
* Get the name list of available test suites
* Get test suite information by its name

Users can register one or multiple test suite lookup folders in a test script by calling the method
register_lib(<lookup_path: str>).

3.3.1 Plugin Folder Structure

A test suite plug-in must have the structure below:

./my_test_suite
|
|- meta.yml
|- __init__.py
|- <any other modules defined by user>

meta.yml has a fixed structure as shown below, and is used as the entry point for the plug-in
loading system. If the test suite folder doesn’t contain this file, it will not be loaded by XOA
Core.

Listing 1: meta.yml example

name: "RFC-2544[Frame Loss]" # Plugin name
version: "1.0" # Plugin current version
core_version: ">=1.0.0" # compatible to xoa-core version
author: # Optional list of authors
- "ACO"
entry_object: "FrameLossTest" # class name of script entry point
data_model: "FrameLossModel" # class name of test suite data model

e entry_object must be inherited from an abstract class: types.PluginAbstract

* data_model must be a class of Pydantic model inherited from pydantic.BaseModel

Note: Be aware of imports during implementation of your plug-in. It is recommended to use
relative import in your plug-in because the library paths in different user environments can be
different, which makes it impossible for the plug-in code to run.

3.3. Test Suite Plugin System 19

https://pydantic-docs.helpmanual.io/

Xena OpenAutomation Core Documentation, Release 2.0.3

Important: Test suites are treated as an asyncio.Task . It means all heavy computational
operations must be implemented with subprocess workers or threadings.

3.3.2 Plugin Example
We have developed a simple and executable test suite plug-in example doing RFC 2544 Frame
Loss Test, and hope it help you get familiar with XOA Core.

You can find the source code of a test suite plug-in example.

3.4 Test Execution System

XOA Core provides the following controlling methods of test suite execution:
* Start test
* Pause/continue test

* Stop test

3.4.1 Start Test

Use execution_id = my_core_controller.start_test_suite(<plugin_name>,
<suite_config_dict>) to start a test and get the test ID as a returned value. With the test
ID, you will be able to stop or pause the test.

<plugin_name> - must match the name from plugin’s meta.yml.

<suite_config_dict> - mustbe a dictionary matching to the following structure:

Listing 2: Dictionary structure for <suite_config_dict>

{
"username": "XOA",
"port_identities": {
"p®": {
"tester_id": "2906f8d041e9fd07191d6a37e£f5785b2",
"tester_index": O,
"module_index": 1,
"port_index": 4
},
s
"config": TestSuiteModel<as dict>
b

20 Chapter 3. Understanding XOA Core

https://docs.python.org/3/library/asyncio-task.html#id2
https://github.com/xenanetworks/open-automation-core/tree/main/examples/billet_plugin_example/FrameLoss

Xena OpenAutomation Core Documentation, Release 2.0.3

If the test suite is successfully started, the function start_test_suite will return an
execution_id, which can be used to control the test suite executions, or to subscribe to the
outgoing messages from the test suite.

Note: A test suite will not start if its test resources are not registered in Resource Manager, or
if one of its test resources is unavailable/disconnected.

3.4.2 Pause/Continue Test
Use await my_core_controller.running_test_toggle_pause(<execution_id>) to
pause/continue a test.

User should use await self.state_conditions.wait_if_paused(), where the test suite
should be paused/continued.

Note: To apply pause/continue action, a valid execution_id must be passed into the method.

3.4.3 Stop Test

Use await my_core_controller.running_test_stop(<execution_id>) to stop a test.

User should use await self.state_conditions.stop_if_stopped(), where the test
suite should be stopped.

If the execution of execution_id exists, the test suite will be terminated.

3.5 Data IO System

XOA Core allows users to subscribe to different messages generated by different test suites
and subsystems (ResourcesManager, ExecutorManager), so you can get test statistics/results,
monitor test progress, receiver errors and warnings, etc.

3.5.1 Message Subscription

XOA Core provide two types of messages for you to subscribe to:
e Subsystem Type

e Test Execution Type

3.5. Data IO System 21

Xena OpenAutomation Core Documentation, Release 2.0.3

Subsystem Type Message

Subscribe to subsystem-type messages to receive messages exchanged between your code and
the testers.

Listing 3: Subscribe to the messages from tester resource
management subsystem.

async for msg in my_controller.listen_changes(<subsystem-type>}:
do whatever you want to the message

There are two types of subsystems that you can subscribe to:

Listing 4: Subsystem types

types .PIPE_EXECUTOR
types . PIPE_RESOURCES

* types.PIPE_EXECUTOR messages tells information about the test executor.

* types.PIPE_RESOURCES messages tells information about the test resources, such as
port reservation status, link sync status, tester connection status and so on.

Test Execution Type
A test execution can generate different types of messages, such as test statistics, test progress,
test state, errors, and warnings. To subscribe to a specific type, you can use the _filter

argument.

Listing 5: Subscribe to statistics of test execution

async for msg in my_controller.listen_changes(execution_id, _filter={
—<filter_type>}):
do whatever you want to the message

The _filter argument is an set of filter types. The first parameter of _filter argument is a
mandatory identifier of the subsystem or the test suite execution. Available filters types are as
shown below:

Listing 6: Available filters types

class EMsgType(Enum) :
STATE = "STATE"
DATA = "DATA"
STATISTICS = "STATISTICS"
PROGRESS = "PROGRESS"
WARNING = "WARNING"
ERROR = "ERROR"

22 Chapter 3. Understanding XOA Core

Xena OpenAutomation Core Documentation, Release 2.0.3

Note: _filter argument is optional. If it is not provided, all message types will be returned
from this test suite execution.

The example below demonstrates how to subscribe to test resource notifications and test results.

from __future__ import annotations
from xoa_core import (

controller,

types,
)
import asyncio
import json
from pathlib import Path

PROJECT_PATH = Path(__file__).parent
XOA_CONFIG = PROJECT_PATH / "xoa_2544_config.json"
PLUGINS_PATH = PROJECT_PATH / "test_suites"”

async def subscribe(ctrl: "controller.MainController", channel_name:..
—str, fltr: set["types.EMsgType"] | None = None) -> None:
async for msg in ctrl.listen_changes(channel_name, _filter=fltr):
print (msg)

async def main() -> None:
Define your tester login credentials
my_tester_credential = types.Credentials(
product=types.EProductType.VALKYRIE,
host="10.20.30.40"

)

Create a default instance of the controller class.
ctrl = await controller.MainController()

Register the plugins folder.
ctrl.register_lib(str(PLUGINS_PATH))

Add tester credentials into teh controller. If already added, it.
—~will be ignored.

If you want to add a list of testers, you need to iterate.
—through the list.

await ctrl.add_tester(my_tester_credential)

Subscribe to test resource notifications.
asyncio.create_task(subscribe(ctrl, channel_name=types.PIPE_
(continues on next page)

3.5. Data IO System 23

Xena OpenAutomation Core Documentation, Release 2.0.3

(continued from previous page)

—RESOURCES))

Load your XOA 2544 config and run.
with open(XOA_CONFIG, "r") as f:

Get rfc2544 test suite information from the core's.
—registration
info = ctrl.get_test_suite_info("'RFC-2544")
if not info:
print("Test suite RFC-2544 is not recognized.")
return None

Test suite name: "RFC-2544" is received from call of c.get_
—available_test_suites()
test_exec_id = ctrl.start_test_suite("'RFC-2544", json.load(f))

The example here only shows a print of test result data.
asyncio.create_task(
subscribe(ctrl, channel_name=test_exec_id, fltr={types.
—EMsgType.STATISTICS})
)

By the next line, we prevent the script from being immediately

terminated as the test execution and subscription are non.
—blockable, and they ran asynchronously,

await asyncio.Event().wait()

if __name__ == "__main__

asyncio.run(main())

3.6 Test Result Types

XOA Core sends test result data (in json format) to your code as shown in the example below. It
is up to you to decide how to process them, either parse JSON into Python dictionary, display
in your console, or store them into a file.

Listing 7: Receive test result data

async for stats_data in ctrl.listen_changes(execution_id, _filter=
—{types.EMsgType.STATISTICS}):
print(stats_data)

There are three types of test result data (JSON format) that you receive from XOA Core.

¢ Live test result data

24 Chapter 3. Understanding XOA Core

https://docs.python.org/3/library/json.html

Xena OpenAutomation Core Documentation, Release 2.0.3

Every second, XOA queries statistics such as port TX and RX counters and sends them to you.
The amount of this type of test result data can be large when your test duration is long.

¢ Intermediate test result data

If the test uses an iterative searching algorithm, such binary search in RFC 2544 Throughput
Test and Back-to-Back Test, the result data after each searching step is called intermediate re-
sult because the searching is not yet complete. Intermediate results let you keep track of the
searching steps.

¢ Final test result data

Final result date are the conclusion of a certain test iteration. For example, the throughput value
for a certain frame size, the traffic latency value for a certain traffic rate with a certain frame
size. This type of test result lets you analyze and verify the performance, conformance, and
functionalities of your DUT/SUT.

To check the type of the test result data:

Listing 8: Check the type of the test result data

The example here only shows a print of test result data.
async for stats_data in ctrl.listen_changes(execution_id, _filter=
—{types.EMsgType.STATISTICS}):
if stats_data.is_final == True:
This is final result
else:

3.7 Migrate from Valkyrie Test Suites

Xena’s test suite applications have only been for Windows platform for a long time. Moving
forward, all of Xena’s existing and future test suites will be included in Xena OpenAutomation,
which is not limited to Windows anymore.

We have developed a test configuration converter, XOA Converter, to help users easily mi-
grate their existing Windows test suite configurations (.v2544 for Valkyrie2544, .v2889 for
Valkyrie2889, .v3918 for Valkyrie3918, and .v1564 for Valkyriel564) into XOA. The illustra-
tion below may help you understand the use flow.

~v2544 Xoa2544.json

VEBBY %0a2B889 json Start test suite with

3918 ———»| XOA Converter x0a3918json ¥ XOA Core
—

For users of XOA who only uses the web GUI to create, import and run tests, there is no need
to use this Python package, because XOA Core is already using this converter.

This converter is meant for those who want to integrate XOA test suites into their own Python
environment without using the web GUI at all.

3.7. Migrate from Valkyrie Test Suites 25

https://docs.xenanetworks.com/projects/xoa-config-converter/

Xena OpenAutomation Core Documentation, Release 2.0.3

Note: The purpose of XOA Converter is ONLY to convert Xena Valkyrie test suit applications’
configuration files into XOA’s configuration files. Thus only four test suite types are supported
by XOA Converter as the source config files.

26 Chapter 3. Understanding XOA Core

CHAPTER
FOUR

APl REFERENCE

4.1 Class MainController

27

Xena OpenAutomation Core Documentation, Release 2.0.3

28 Chapter 4. API Reference

CHAPTER
FIVE

GLOSSARY OF TERMS

API
Application Programming Interface.

IDE
An integrated development environment (IDE) is a software application that provides
comprehensive facilities to computer programmers for software development.

Index Manager
An Index Manager manages the subport-level resource indices such as stream indices,
filter indices, connection group indices, match term indices, length term indices, etc. It
automatically ensures correct and conflict-free index assignment.

Module Manager
A Module Manager helps you access test modules. There is one Module Manager per
tester.

Port Manager
A Port Managers helps you access test ports. There is one Port Manager per test module.

Resource Manager
XOA Python API HL-API provides an easy way to manage subtester test resources, in-
cluding obtaining test resources and managing indices.

Test Resource
Test chassis, test module, and test port, both hardware and virtual are referred to as test
resources. A user must have the ownership of a test resource before be able to perform
testing.

TGA
Traffic Generation and Analysis.

Valkyriel564
Valkyriel564 provides full support for both the configuration and performance test types
described in Y.1564. It is installed together with ValkyrieManager and uses the same ter-
minology. The simple intuitive GUI makes it easy to connect one or more ValkyrieCom-
pact and/or ValkyrieBay chassis for testing Layer 2 and Layer 3.

Valkyrie2544
Valkyrie2544 offers full support for the 4 test-types specified in RFC2544, and also lets
you partially enable one or more test types. Valkyrie2544 supports different network

29

https://xenanetworks.com/product/valkyrie1564/
https://xenanetworks.com/product/valkyrie2544/

Xena OpenAutomation Core Documentation, Release 2.0.3

topologies and traffic flow directions on both Layer 2 and Layer 3, as well as both IPv4
and IPv6.

Valkyrie2889
Valkyrie2889 is a free application for benchmarking the performance of Layer 2 LAN
switches.

Valkyrie3918
Valkyrie3918 provides an easy-to-use port configuration panel that lets you add and re-
move ports, and assign IP addresses and port roles. Ports from multiple ValkyrieBay and
ValkyrieCompact chassis can be freely mixed.

XOA
Xena OpenAutomation

XOA CLI
XOA Command-Line Interface. Xena provides a rich set of CLI commands for users to
administer test chassis for test automation. Read more here.

XOA Core
Xena OpenAutomation Core is an open test suite framework to execute XOA Test Suites
as its plugins.

XOA Python API
The foundation of Xena OpenAutomation is its Python API (XOA Python API) that pro-
vides interfaces for engineers to manage Xena hardware and virtual test equipment.

30 Chapter 5. Glossary of Terms

https://xenanetworks.com/product/valkyrie2889/
https://xenanetworks.com/product/valkyrie3918/
https://xenanetworks.com/?knowledge-base=knowledge-base/automation/scripting-for-valkyrie-vantage-chimera/valkyrie-vantage-chimera-cli-scripting-guide/overview/intro
https://github.com/xenanetworks/open-automation-core

CHAPTER
SIX

INDICES AND TABLES

* genindex
* modindex

e search

31

Xena OpenAutomation Core Documentation, Release 2.0.3

32 Chapter 6. Indices and Tables

A

APT, 29

IDE, 29
Index Manager, 29

M

Module Manager, 29

F)

Port Manager, 29

R

Resource Manager, 29

T

Test Resource, 29
TGA, 29

\Y

Valkyriel564, 29
Valkyrie2544, 29
Valkyrie2889, 30
Valkyrie3918, 30

X

XO0A, 30

X0A CLI, 30

X0A Core, 30

X0A Python API, 30

INDEX

33

	Introduction
	Getting Started
	Installing XOA Core
	Prerequisites
	Python
	pip

	Installing From PyPI Using pip
	Install to Global Namespace
	Install in Virtual Environment

	Upgrading From PyPI Using pip
	Installing Manually From Source
	Uninstall and Remove Unused Dependencies

	Step-by-Step Guide
	Create Project Folder
	Install XOA Core
	Place Test Suite Plugins
	Run Tests from XOA Test Suite Configurations
	Run Tests from Valkyrie Test Suite Configurations
	Receive Test Result Data

	Understanding XOA Core
	Introduction
	Resources Management System
	Test Suite Plugin System
	Plugin Folder Structure
	Plugin Example

	Test Execution System
	Start Test
	Pause/Continue Test
	Stop Test

	Data IO System
	Message Subscription
	Subsystem Type Message
	Test Execution Type

	Test Result Types
	Migrate from Valkyrie Test Suites

	API Reference
	Class MainController

	Glossary of Terms
	Indices and Tables
	Index

